INS/GPS Integration Using Gaussian Sum Particle Filter

نویسندگان

  • Yukihiro Kubo
  • Jinling Wang
چکیده

In INS/GPS integration, the data fusion algorithm involves properly handling of nonlinear models. Therefore the nonlinear filtering methods have been commonly applied in the INS/GPS integration to estimate the state vector. The most popular and commonly used method is the Extended Kalman Filter (EKF) which approximates the nonlinear state and measurement equations using the first order Taylor series expansion. On the other hand, recently other nonlinear filters such as Particle Filter (PF), Unscented Kalman Filter (UKF) and Gaussian Sum Filter (GSF) are also considered for use in the INS/GPS integration. The GSF is a nonlinear filter where its predictive priori density is assumed to be the sum of several normal distributions. However the first order Taylor series approximation is applied in the GSF for updating each distribution similarly to the EKF. So there exists the possibility of degrading the filtering performance under high nonlinearity shown in the classic EKF. In this paper we apply a nonlinear filter combining the GSF and PF, which is referred to as Gaussian Sum Particle Filter (GSPF). The GSPF is based on the similar concept of the GSF, but the GSPF updates its Gaussian sum expressions by using the particles instead of the linear approximations. The performance of the GSPF based loosely coupled INS/GPS integration is compared with other filters in numerical simulations. From the simulation results, it is found that the GSPF has an ability to improve the navigation performance when there exist large uncertainties in the initial estimates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Gaussian Sum Filtering Methods for INS/GPS Integration

In INS (Inertial Navigation System) /GPS (Global Positioning System) integration, nonlinear models should be properly handled. The most popular and commonly used method is the Extended Kalman Filter (EKF) which approximates the nonlinear state and measurement equations using the first order Taylor series expansion. On the other hand, recently, some nonlinear filtering methods such as Gaussian S...

متن کامل

Improvement of Navigation Accuracy using Tightly Coupled Kalman Filter

In this paper, a mechanism is designed for integration of inertial navigation system information (INS) and global positioning system information (GPS). In this type of system a series of mathematical and filtering algorithms with Tightly Coupled techniques with several objectives such as application of integrated navigation algorithms, precise calculation of flying object position, speed and at...

متن کامل

کاهش تعداد ماهواره‌ها در یک سیستم ناوبری ترکیبی GPS/INS با استفاده از فیلتر ذره‌ای

The estimation of situation in a combinational navigation GPS/INS with least number of satellites is the main purpose of this paper. As inertial measurement unit uses altimeter for height measurement, we can assume which height poses certain amounts, whereas geographical length and width are unknown to us in this paper. The single difference GPS is employed for updating the inertial navigation ...

متن کامل

GPS/INS Integration for Vehicle Navigation based on INS Error Analysis in Kalman Filtering

The Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system has been a hot research topic in the recent decade. The Micro Electrical Mechanical Sensors (MEMS) successfully solved the problems of price, size and weight with the traditional INS. Therefore...

متن کامل

A Novel Approach for GPS/INS Integration using Recurrent Neural Network with Evolutionary Optimization Techniques

Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) has been extensively used in aircraft applications like autopilot, to provide better navigation, even in the absence of GPS. Even though Kalman Filter (KF) based GPS/INS integration provides a robust solution to navigation, it requires prior knowledge of the error model of INS, which increases the complexity of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008